Maximum Likelihood Blind Source Separation: A Context-Sensitive Generalization of ICA

نویسندگان

  • Barak A. Pearlmutter
  • Lucas C. Parra
چکیده

In the square linear blind source separation problem, one must nd a linear unmixing operator which can detangle the result xi(t) of mixing n unknown independent sources si(t) through an unknown n n mixing matrix A(t) of causal linear lters: xi = P j aij sj . We cast the problem as one of maximum likelihood density estimation, and in that framework introduce an algorithm that searches for independent components using both temporal and spatial cues. We call the resulting algorithm \Contextual ICA," after the (Bell and Sejnowski 1995) Infomax algorithm, which we show to be a special case of cICA. Because cICA can make use of the temporal structure of its input, it is able separate in a number of situations where standard methods cannot, including sources with low kurtosis, colored Gaussian sources, and sources which have Gaussian histograms. 1 The Blind Source Separation Problem Consider a set of n indepent sources s1(t); : : : ; sn(t). We are given n linearly distorted sensor reading which combine these sources, xi = P j aijsj , where aij is a lter between source j and sensor i, as shown in gure 1a. This can be expressed as xi(t) = X

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Context-Sensitive Generalization of ICA

— Source separation arises in a surprising number of signal processing applications, from speech recognition to EEG analysis. In the square linear blind source separation problem without time delays, one must find an unmixing matrix which can detangle the result of mixing unknown independent sources through an unknown mixing matrix. The recently introduced ICA blind source separation algorithm ...

متن کامل

An Introduction to Independent Component Analysis and Blind Source Separation

1 ICA 2 1.1 Examples of linear mixtures of independent components . . . . . 2 1.2 Basic assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 ICA from Maximum Likelihood . . . . . . . . . . . . . . . . . . . 4 1.4 PCA and ICA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.5 Minimal Mutual Information . . . . . . . . . . . . . . . . . . . . 6 1.6 Maximum Transmitte...

متن کامل

Blind Source Separation Using the Block-Coordinate Relative Newton Method

Presented here is a generalization of the modified relative Newton method, recently proposed in [1] for quasi-maximum likelihood blind source separation. Special structure of the Hessian matrix allows to perform block-coordinate Newton descent, which significantly reduces the algorithm computational complexity and boosts its performance. Simulations based on artificial and real data show that t...

متن کامل

Convolutive Source Separation and Signal Modeling with ML

In independent component analysis (ICA) an instantaneous mix of sources can be recovered using maximum Likelihood (ML). In Convolutive blind source separation (BSS) the mixture arises as a combination of di erently convolved source signals due to time delays and a reverberating acoustic environment. Instead of modeling a particular time instant now a time window of the mixed signals has to be m...

متن کامل

Flexible Bayesian Independent Component Analysis for Blind Source Separation

Independent Component Analysis (ICA) is an important tool for extracting structure from data. ICA is traditionally performed under a maximum likelihood scheme in a latent variable model and in the absence of noise. Although extensively utilised, maximum likelihood estimation has well known drawbacks such as overfitting and sensitivity to local-maxima. In this paper, we propose a Bayesian learni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996